Abstract

In this paper, a new meshless method, Chebyshev tau matrix method (CTMM) is researched. The matrix representations for the differentiation and multiplication of Chebyshev expansions make CTMM easy to implement. Problems with curve boundary can be efficiently treated by CTMM. Poisson-type problems, including standard Poisson problems, Helmholtz problems, problems with variable coefficients and nonlinear problems are computed. Some numerical experiments are implemented to verify the efficiency of CTMM, and numerical results are in good agreement with the analytical one. It appears that CTMM is very effective for Poisson-type problems in irregular domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.