Abstract

<p style='text-indent:20px;'>We propose a numerical approach for computing center manifolds of equilibria in ordinary differential equations. Near the equilibria, the center manifolds are represented as graphs of functions satisfying certain partial differential equations (PDEs). We use a Chebyshev spectral method for solving the PDEs numerically to compute the center manifolds. We illustrate our approach for three examples: A two-dimensional system, the Hénon-Heiles system (a two-degree-of-freedom Hamiltonian system) and a three-degree-of-freedom Hamiltonian system which have one-, two- and four-dimensional center manifolds, respectively. The obtained results are compared with polynomial approximations and other numerical computations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.