Abstract

The fuzzy integral equation is used to model many physical phenomena which arise in many fields like chemistry, physics, and biology, etc. In this article, we emphasize on mathematical modeling of the fuzzy fractional Fredholm–Volterra integral equation. The numerical solution of the fuzzy fractional Fredholm–Volterra equation is determined in which model contains fuzzy coefficients and fuzzy initial condition. First, an operational matrix of Chebyshev polynomial of Caputo type fractional fuzzy derivative is derived in fuzzy environment. The integral term is approximated by the Chebyshev spectral method and the differential term is approximated by the operational matrix. This method converted the given fuzzy fractional integral equation into algebraic equations which are fuzzy in nature. The desired numerical solution is to find out by solving these algebraic equations. The different particular cases of our model have been solved which depict the feasibility of our method. The error tables show the accuracy of the method. We also can see the accuracy of our method by 3D figures of exact and obtained numerical solutions. Hence, our method is suitable to deal with the fuzzy fractional Fredholm–Volterra equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.