Abstract

Problems of finite-temperature quantum statistical mechanics can be formulated in terms of imaginary (Euclidean) -time Green's functions and self-energies. In the context of realistic Hamiltonians, the large energy scale of the Hamiltonian (as compared to temperature) necessitates a very precise representation of these functions. In this paper, we explore the representation of Green's functions and self-energies in terms of a series of Chebyshev polynomials. We show that many operations, including convolutions, Fourier transforms, and the solution of the Dyson equation, can straightforwardly be expressed in terms of the series expansion coefficients. We then compare the accuracy of the Chebyshev representation for realistic systems with the uniform-power grid representation, which is most commonly used in this context.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.