Abstract

The EEG-based HTR utilizing AEP responses of both group of participants with normal hearing and abnormal hearing are managed with the objective of detecting hearing sensitivity level using Chebyshev Recurrence Polynomial and Dempster Convolutional Neural Network (CRP-DCNN) is designed. The CRP-DCNN method is split into three sections. They are preprocessing using Chebyshev Recurrence Polynomial Filter, feature extraction by employing Orthogonalized Singular Value and Median Skewed Wavelet. Here, both Orthogonalized Singular Value Decomposition-based parametric and Median Skewness-based non-parametric modeling techniques are employed for first obtaining the hearing threshold factors and then extracting statistical features for further processing. Finally Dempster Convolutional Neural Network-based Classification for detecting hearing sensitivity level is presented. Hence, the objective to determine the significant correlations between the brain dynamics and the auditory responses and detect the hearing sensitivity level of the group of participants with normal hearing and with the group of participants with hearing loss are designed on accordance with the features of EEG signals. Simulations are performed in MATLAB to validate the features of EEG signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.