Abstract

In this paper, we address the question whether in a given Banach space, a Chebyshev center of a nonempty bounded subset can be a farthest point of the set. We obtain a characterization of two-dimensional real strictly convex spaces as those ones where a Chebyshev center cannot contribute to the set of farthest points of a subset. In dimension greater than two, every non-Hilbert smooth space contains a subset whose Chebyshev center is a farthest point. We explore the scenario in uniformly convex Banach spaces and further study the roles played by centerability and Mcompactness in the scheme of things to obtain a step by step characterization of strictly convex Banach spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.