Abstract

Eusocial insects undoubtedly evolved from solitary ancestors, but how this occurred is not well established. The Ground Plan hypothesis suggests that gene networks that once regulated the oviposition and foraging phases of an ancestral solitary insect’s life cycle have been co-opted to establish the queen–worker dimorphism in extant eusocial insects; queens permanently express genes that were once expressed during the oviposition phase, whereas workers express genes that were once associated with foraging. An extension of the Ground Plan hypothesis, the Reproductive Ground Plan-forager hypothesis, proposes that foraging specialization by worker honey bees for either pollen or nectar is controlled by the same reproductive gene networks. According to the Reproductive Ground Plan-forager hypothesis, workers with more ovarioles forage early in life and specialize in pollen collection. Here we find that among workers of a highly reproductive honey bee subspecies, Apis mellifera capensis, there is a positive correlation between ovariole number and age at onset of foraging, and no association between ovariole number and foraging preference, thus contradicting key aspects of the Reproductive Ground Plan-forager hypothesis. We also find a negative association between ovariole number and ovary activation, suggesting that high ovariole number is not directly related to reproductive potential as previously assumed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call