Abstract
Although mutualistic interactions are widespread and essential in ecosystem functioning, the emergence of uncooperative cheaters threatens their stability, unless there are some physiological or ecological mechanisms limiting interactions with cheaters. In this framework, we investigated the patterns of specialization and phylogenetic distribution of mycoheterotrophic cheaters vs noncheating autotrophic plants and their respective fungi, in a global arbuscular mycorrhizal network with>25000 interactions. We show that mycoheterotrophy evolved repeatedly among vascular plants, suggesting low phylogenetic constraints for plants. However, mycoheterotrophic plants are significantly more specialized than autotrophic plants, and they tend to be associated with specialized and closely related fungi. These results raise new hypotheses about the mechanisms (e.g. sanctions, or habitat filtering) that actually limit the interaction of mycoheterotrophic plants and their associated fungi with the rest of the autotrophic plants. Beyond mycorrhizal symbiosis, this unprecedented comparison of mycoheterotrophic vs autotrophic plants provides a network and phylogenetic framework to assess the presence of constraints upon cheating emergences in mutualisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.