Abstract

CHARGE syndrome is a rare human disorder caused by mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7). Characteristics of CHARGE are varied and include developmental ear and hearing anomalies. Here we report a novel mouse model of CHD7 dysfunction, termed Looper. The Looper strain harbours a nonsense mutation (c.5690C>A, p.S1897X) within the Chd7 gene. Looper mice exhibit many of the clinical features of the human syndrome, consistent with previously reported CHARGE models, including growth retardation, facial asymmetry, vestibular defects, eye anomalies, hyperactivity, ossicle malformation, hearing loss and vestibular dysfunction. Looper mice display an otosclerosis-like fusion of the stapes footplate to the cochlear oval window and blepharoconjunctivitis but not coloboma. Looper mice are hyperactive and have vestibular dysfunction but do not display motor impairment.

Highlights

  • Syndromic hearing loss accounts for approximately half of all inherited hearing impairment [1,2]

  • CHARGE is a syndromic hearing impairment that is predominantly caused by mutations in the chromodomain helicase DNA binding protein 7 (CHD7) gene

  • The Looper Phenotype is Caused by a Nonsense Mutation in Chromodomain Helicase DNA binding 7 gene (Chd7)

Read more

Summary

Introduction

Syndromic hearing loss accounts for approximately half of all inherited hearing impairment [1,2]. Over 400 syndromes involving hearing loss have been characterised [3], with most having an underlying genetic cause [1]. In 60% of reported cases a single point mutation is responsible for the disease [4]. CHARGE is a syndromic hearing impairment that is predominantly caused by mutations in the chromodomain helicase DNA binding protein 7 (CHD7) gene. CHARGE is an acronym describing some of the main clinical features of the disease (ocular Coloboma, Heart defects, choanal Atresia, Retarded growth, Genital hypoplasia and Ear anomalies). The extent and variability of CHARGE characteristics exemplify the importance of CHD7 in multiple developmental pathways.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.