Abstract

Chemoresistance remains a major challenge in gastric cancer (GC). Chromodomain helicase DNA-binding protein 4 (CHD4) mediated chromatin remodeling plays critical roles in various tumor types, but its role in chemoresistance in GC remains uncharacterized. CHD4 expression was examined by immunohistochemistry and Western blotting. The role of CHD4 on cell proliferation and chemoresistance of GC was examined in vitro and in vivo. Immunoprecipitation and liquid chromatography-mass spectrometry were used to identify CHD4-binding proteins and a proximity ligation assay was used to explore protein-protein interaction. Chemoresistance is associated with upregulation of CHD4 in the tumor tissues of GC patients. Overexpression of CHD4 increased chemoresistance and cell proliferation. Knockdown of CHD4 induced cell apoptosis and cell cycle arrest. CHD4 mediates the decrease of the intracellular concentration of cisplatin by inducing drug efflux. Additionally, CHD4 promotes the interaction between ERK1/2 and MEK1/2, resulting in continuous activation of MEK/ERK pathway. Knockdown of CHD4 in GC increased sensitivity to chemotherapy and suppressed tumor growth in a mouse xenograft model. This study identifies CHD4 dominated multi-drug efflux as a promising therapeutic target for overcoming acquired chemoresistance in GC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call