Abstract

Dynamic regulation of chromatin structure is of fundamental importance for modulating genomic activities in higher eukaryotes. The opposing activities of Polycomb group (PcG) and trithorax group (trxG) proteins are part of a chromatin-based cellular memory system ensuring the correct expression of specific transcriptional programs at defined developmental stages. The default silencing activity of PcG proteins is counteracted by trxG proteins that activate PcG target genes and prevent PcG mediated silencing activities. Therefore, the timely expression and regulation of PcG proteins and counteracting trxG proteins is likely to be of fundamental importance for establishing cell identity. Here, we report that the chromodomain/helicase/DNA–binding domain CHD3 proteins PICKLE (PKL) and PICKLE RELATED2 (PKR2) have trxG-like functions in plants and are required for the expression of many genes that are repressed by PcG proteins. The pkl mutant could partly suppress the leaf and flower phenotype of the PcG mutant curly leaf, supporting the idea that CHD3 proteins and PcG proteins antagonistically determine cell identity in plants. The direct targets of PKL in roots include the PcG genes SWINGER and EMBRYONIC FLOWER2 that encode subunits of Polycomb repressive complexes responsible for trimethylating histone H3 at lysine 27 (H3K27me3). Similar to mutants lacking PcG proteins, lack of PKL and PKR2 caused reduced H3K27me3 levels and, therefore, increased expression of a set of PcG protein target genes in roots. Thus, PKL and PKR2 are directly required for activation of PcG protein target genes and in roots are also indirectly required for repression of PcG protein target genes. Reduced PcG protein activity can lead to cell de-differentiation and callus-like tissue formation in pkl pkr2 mutants. Thus, in contrast to mammals, where PcG proteins are required to maintain pluripotency and to prevent cell differentiation, in plants PcG proteins are required to promote cell differentiation by suppressing embryonic development.

Highlights

  • Dynamic regulation of chromatin structure is the underlying scheme for modulating genome activities in higher eukaryotes

  • The intricate decision whether a gene should be active or repressed is made by the counteractive activities of trithorax group and Polycomb group (PcG) proteins that form part of a chromatin-based cellular memory system

  • We show that the CHD3 proteins PICKLE and PICKLE RELATED2 (PKR2) have trithorax group (trxG)-like functions in plants and activate PcG protein target genes

Read more

Summary

Introduction

Dynamic regulation of chromatin structure is the underlying scheme for modulating genome activities in higher eukaryotes. There are two major classes of proteins with enzymatic activities directed at chromatin - histone modifying enzymes and ATP dependent chromatin remodelers. Histone modifying enzymes add or remove posttranslational modifications such as acetylation, methylation, phosphorylation and ubiquitinylation on histones. These modifications are recognized and bound by factors that cause changes in chromatin structure by not well understood mechanisms [1]. ATP dependent chromatin remodelers modify chromatin structure by altering interactions between DNA and histone octamers, resulting in changes of nucleosome position or composition associated with changes in nucleosomal DNA accessibility [2]. CLF is a Polycomb group (PcG) protein with histone methyltransferase activity [3,4], and PKL is a predicted ATP-dependent chromatin remodeling factor of the chromodomain/helicase/DNA-binding domain (CHD3) subfamily [5,6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call