Abstract

We study solutions of the Newtonian $n$-body problem which tend to infinity hyperbolically, that is, all mutual distances tend to infinity with nonzero speed as $t \rightarrow +\infty$ or as $t \rightarrow -\infty$. In suitable coordinates, such solutions form the stable or unstable manifolds of normally hyperbolic equilibrium points in a boundary manifold "at infinity". We show that the flow near these manifolds can be analytically linearized and use this to give a new proof of Chazy's classical asymptotic formulas. We also address the scattering problem, namely, for solutions which are hyperbolic in both forward and backward time, how are the limiting equilibrium points related? After proving some basic theorems about this scattering relation, we use perturbations of our manifold at infinity to study scattering "near infinity", that is, when the bodies stay far apart and interact only weakly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.