Abstract

This paper proposes a novel chattering free, finite-time convergent, robust high order super-twisting sliding mode controller for trajectory tracking of a robotic manipulator in presence of unknown structured uncertainties, parametric uncertainties and time varying external disturbances. The control method is designed using homogeneous sliding manifold and super-twisting sliding mode control (STC). Next, unmeasured states are estimated by a robust exact differentiator. The stability of the proposed controller is analyzed by Lyapunov stability theory and its efficacy is examined by performing simulations on 2-DoF planar robot manipulator system in presence of inertial uncertainty and external disturbances. The proposed controller judiciously eliminates the chattering and successfully overcomes the effect of external disturbances and inertia uncertainty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call