Abstract
SummaryIn this paper sliding mode motion design is considered for nonlinear plants which are linear with respect to control input. The dynamics of the robotic manipulators is treated with and without those of the actuators. When the dynamics of the actuators is included a design of the sliding modes for the systems with discontinuous control is performed. If actuators' dynamics is negelected the control is assumed to be continuous quantity. By combining the variable structure systems and Lyapunov designs a new algorithm is developed which has all the good properties of the sliding mode systems while avoiding unnecessary discontinuity of the control thus eliminating chattering. Neither the explicit calculation of the equivalent control, nor high gain inside the boundary layer are used. The parameters of the control depend on the plant's gain matrix, and the gradients of the sliding mode manifold. This control method is then applied to develop a unified control strategy for the motion control systems including the path tracking control, the impedance control and the force control of a robotic manipulator. It is shown that all these tasks can be formulated in the same mathematical form in which selected so-called sliding mode functions must track their references. In this way the systems state is forced to remain on the selected manifold in the state space after reaching it. The solution is interpreted in both the Joint space and the Work space for n -degrees of freedom robotic manipulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.