Abstract

Chatter prediction is crucial in high-speed milling, since at high speed, a significant increase of productivity can be achieved by selecting optimal set of chatter-free cutting parameters. However, chatter predictive models show reduced accuracy at high speed due to machine dynamics, acquired in stationary condition (i.e., without spindle rotating), but changing with spindle speed. This paper proposes a hybrid experimental-analytical approach to identify tool-tip frequency response functions during cutting operations, with the aim of improving chatter prediction at high speed. The method is composed of an efficient test and an analytical identification technique based on the inversion of chatter predictive model. The proposed technique requires few cutting tests and a microphone to calculate speed-dependent chatter stability in a wide range of spindle speed, without the need of stationary frequency response function (FRF) identification. Numerical and experimental validations are presented to show the method implementation and assess its accuracy. As proven in the paper, computed speed-dependent tool-tip FRF in a specific configuration (i.e., slotting) can be used to predict chatter occurrence in any other conditions with the same tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.