Abstract
The accurate prediction of chatter stability in general turning operations requires the inclusion of tool geometry and cutting conditions. This paper presents regenerative chip and regenerative chip area/cutting edge contact length based dynamic cutting force models, which consider cutting conditions and turning tool geometry. The cutting process is modeled as it takes place along the equivalent chord length between the two end points of the cutting edge. The regenerative chip model is simple, and the stability can be solved directly. However, the three-dimensional model considers the effect of tool vibrations at the present and previous spindle revolutions on the chip area, chord length, and force directions and is solved using Nyquist stability criterion. The penetration of worn tool flank into the finish surface is considered as a source of process damping. The effects of the nose radius, approach angle of the tool, and feedrate are investigated. The proposed stability model is compared favorably against the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.