Abstract

The recent surge in popularity of large language models (LLMs), such as ChatGPT, has showcased their proficiency in medical examinations and potential applications in health care. However, LLMs possess inherent limitations, including inconsistent accuracy, specific prompting requirements, and the risk of generating harmful hallucinations. A domain-specific model might address these limitations effectively. Developmental design. Virtual. Otolaryngology-head and neck surgery (OHNS) relevant data were systematically gathered from open-access Internet sources and indexed into a knowledge database. We leveraged Retrieval-Augmented Language Modeling to recall this information and utilized it for pretraining, which was then integrated into ChatGPT4.0, creating an OHNS-specific knowledge question & answer platform known as ChatENT. The model is further tested on different types of questions. ChatENT showed enhanced performance in the analysis and interpretation of OHNS information, outperforming ChatGPT4.0 in both the Canadian Royal College OHNS sample examination questions challenge and the US board practice questions challenge, with a 58.4% and 26.0% error reduction, respectively. ChatENT generated fewer hallucinations and demonstrated greater consistency. To the best of our knowledge, ChatENT is the first specialty-specific knowledge retrieval artificial intelligence inthe medical field that utilizes the latest LLM. It appears to have considerable promise in areas such as medical education, patient education, and clinical decision support. The model has demonstrated the capacity to overcome the limitations of existing LLMs, thereby signaling a future of more precise, safe, and user-friendly applications in the realm of OHNS and other medical fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.