Abstract

Technical Q&#x0026;A sites (e.g., Stack Overflow (SO)) are important resources for developers to search for knowledge about technical problems. Search engines provided in Q&#x0026;A sites and information retrieval approaches (e.g., word embedding-based) have limited capabilities to retrieve relevant questions when queries are imprecisely specified, such as missing important technical details (e.g., the user&#x2019;s preferred programming languages). Although many automatic query expansion approaches have been proposed to improve the quality of queries by expanding queries with relevant terms, the information missed in a query is not identified. Moreover, without user involvement, the existing query expansion approaches may introduce unexpected terms and lead to undesired results. In this paper, we propose an interactive query refinement approach for question retrieval, named <i>Chatbot4QR</i>, which can assist users in recognizing and clarifying technical details missed in queries and thus retrieve more relevant questions for users. Chatbot4QR automatically detects missing technical details in a query and generates several clarification questions (CQs) to interact with the user to capture their overlooked technical details. To ensure the accuracy of CQs, we design a heuristic-based approach for CQ generation after building two kinds of technical knowledge bases: a manually categorized result of 1,841 technical tags in SO and the multiple version-frequency information of the tags. We develop a Chatbot4QR prototype that uses 1.88 million SO questions as the repository for question retrieval. To evaluate Chatbot4QR, we conduct six user studies with 25 participants on 50 experimental queries. The results are as follows. (1) On average 60.8 percent of the CQs generated for a query are useful for helping the participants recognize missing technical details. (2) Chatbot4QR can rapidly respond to the participants after receiving a query within approximately 1.3 seconds. (3) The refined queries contribute to retrieving more relevant SO questions than nine baseline approaches. For more than 70 percent of the participants who have preferred techniques on the query tasks, Chatbot4QR significantly outperforms the state-of-the-art word embedding-based retrieval approach with an improvement of at least 54.6 percent in terms of two measurements: Pre<inline-formula><tex-math notation="LaTeX">$@$</tex-math><alternatives><mml:math><mml:mo>@</mml:mo></mml:math><inline-graphic xlink:href="xia-ieq1-3016006.gif"/></alternatives></inline-formula>k and NDCG<inline-formula><tex-math notation="LaTeX">$@$</tex-math><alternatives><mml:math><mml:mo>@</mml:mo></mml:math><inline-graphic xlink:href="xia-ieq2-3016006.gif"/></alternatives></inline-formula>k. (4) For 48-88 percent of the assigned query tasks, the participants obtain more desired results after interacting with Chatbot4QR than directly searching from Web search engines (e.g., the SO search engine and Google) using the original queries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.