Abstract
The concept of Natural Language Processing has seen a remarkable advancement in the recent years. This remarkable advancement was particularly with the development of Large Language Models (LLM). Large Language Models are used to develop a human like conversations. This LLM is a part of Natural Language Processing which focuses on enabling computers to understand, interpret, and generate human language. The existing system of chatbots does not generate human like responses. The proposed system of chatbots uses the power of Large Language Models to generate more human like responses, providing the conversation in a natural way. By genereating human like respones, it will be in a natural way for the user. To enhance user experience, the chatbot uses a dynamic learning mechanism, by which it continuously adapt to user preferences and evolving conversational patterns. This system uses feedbacks from the users to refine its responses everytime.Moreover, the chatbot is designed with a multi-turn conversational context awareness, allowing it to maintain coherence and relevance throughout extended dialogues.The effectiveness of the proposed chatbot is evaluated through user testing, comparing its performance against traditional rule-based chatbots and existing conversational agents. This report explains about the usage of Large Language Models in the design and implementation of conversational chatbots. The outcomes of this research contribute to the advancement of intelligent chatbot systems, demonstrating the potential of large language models to significantly enhance conversational AI applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.