Abstract

ObjectiveChatbots have the potential to improve user compliance in electronic Patient-Reported Outcome (ePRO) system. Compared to rule-based chatbots, Large Language Model (LLM) offers advantages such as simplifying the development process and increasing conversational flexibility. However, there is currently a lack of practical applications of LLMs in ePRO systems. Therefore, this study utilized ChatGPT to develop the Chat-ePRO system and designed a pilot study to explore the feasibility of building an ePRO system based on LLM. Materials and MethodsThis study employed prompt engineering and offline knowledge distillation to design a dialogue algorithm and built the Chat-ePRO system on the WeChat Mini Program platform. In order to compare Chat-ePRO with the form-based ePRO and rule-based chatbot ePRO used in previous studies, we conducted a pilot study applying the three ePRO systems sequentially at the Sir Run Run Shaw Hospital to collect patients’ PRO data. ResultChat-ePRO is capable of correctly generating conversation based on PRO forms (success rate: 95.7 %) and accurately extracting the PRO data instantaneously from conversation (Macro-F1: 0.95). The majority of subjective evaluations from doctors (>70 %) suggest that Chat-ePRO is able to comprehend questions and consistently generate responses. Pilot study shows that Chat-ePRO demonstrates higher response rate (9/10, 90 %) and longer interaction time (10.86 s/turn) compared to the other two methods. ConclusionOur study demonstrated the feasibility of utilizing algorithms such as prompt engineering to drive LLM in completing ePRO data collection tasks, and validated that the Chat-ePRO system can effectively enhance patient compliance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.