Abstract

Persistence and unpredictable large increments characterize the volatility of financial returns. We propose the Multiplicative Error Model with volatility jumps (MEM-J) to describe and predict the probability and the size of these extreme events. Under the MEM-J, the conditional density of the realized measure is a countably infinite mixture of Gamma and Kappa distributions, with closed form conditional moments. We derive stationarity conditions and the asymptotic theory for the maximum likelihood estimation. Estimates of the volatility jump component confirm that the probability of jumps dramatically increases during the financial crises. The MEM-J improves over other models with fat tails.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.