Abstract

ABSTRACT Tracking the flight patterns of birds and bats in three-dimensional space is central to key questions in evolutionary ecology but remains a difficult technical challenge. For example, complex aerial flight displays are common among birds breeding in open habitats, but information on flight performance is limited. Here, we demonstrate the feasibility of using a large ground-based 4-microphone planar array to track the aerial flight displays of the cryptic Jack Snipe Lymnocryptes minimus. The main element of male display flights resembles a galloping horse at a distance. Under conditions of sufficient signal-to-noise ratio and of vertical alignment with the microphone array, we successfully tracked male snipe in 3D space for up to 25 seconds with a total flight path of 280 m. The ’gallop’ phase of male snipe dropped from ca. 141 to 64 m above ground at an average velocity of 77 km/h and up to 92 km/h. Our project is one of the first applications of bioacoustics to measure 3D flight paths of birds under field conditions, and our results were consistent with our visual observations. Our microphone array and post-processing workflow provides a standardised protocol that could be used to collect comparative data on birds with complex aerial flight displays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.