Abstract

Cell migration in morphogenesis and cancer metastasis typically involves interplay between different cell types. We construct and study a minimal, one-dimensional model composed of two different motile cells with each cell represented as an active elastic dimer. The interaction between the two cells via cadherins is modeled as a spring that can rupture beyond a threshold force as it undergoes dynamic loading from the interacting motile cells. We obtain a phase diagram consisting of chase-and-run dynamics and clumping dynamics as a function of the stiffness of the interaction spring and the threshold force and, therefore, posit that active rupture, or rupture via active forces, is a mechanosensitive means to regulate dynamics between cells. Since the parameters in the model differentiate between N- and E-cadherins, we make predictions for the interactions between a placodelike cell and a neural crestlike cell in a microchannel as well as discuss how our results inform chase-and-run dynamics found in a group of placode cells interacting with a group of neural crest cells. In particular, an argument was made in the latter case that the feedback between cadherins and cell-substrate interaction via integrins was necessary to obtain the chase-and-run behavior. Based on our two-cell results, we argue that this feedback accentuates, but is not necessary for, the chase-and-run behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.