Abstract
Chartreusin and elsamicin A are structurally related antibiotics that bind to GC-rich tracts in DNA, with a clear preference for B-DNA over Z-DNA. They inhibit RNA synthesis and cause single-strand scission of DNA via the formation of free radicals. Elsamicin A can also be regarded as the most potent inhibitor of topoisomerase II reported so far. It can inhibit the formation of several DNA-protein complexes. Elsamicin A binding to the P1 and P2 promoter regions of the c-myc oncogene inhibits the binding of the Sp1 transcription factor, thus inhibiting transcription. Despite the pharmacological interest in chartreusin, elsamicin A and their derivatives, there is no experimental data on the structure of their complexes with DNA. This shortcoming has been partially solved by a theoretical approach, which provided some details about the DNA-elsamicin A interaction, and the thermodynamic characterization of the binding of chartreusin and elsamicin A to DNA. Elsamicin A but not chartreusin is being developed clinically as an anti-cancer agent. IST-622 (6-O-(3-ethoxypropylonyl)-3',4'-O-exo-benzylidene-chartreusin), a novel semi-synthetic derivative of chartreusin, which has shown a promising anti-cancer activity in a phase II study, appears to be a pro-drug with a more suitable pharmacokinetic profile than chartreusin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.