Abstract

The identification of small molecules that fall within the biologically relevant subfraction of vast chemical space is of utmost importance to chemical biology and medicinal chemistry research. The prerequirement of biological relevance to be met by such molecules is fulfilled by natural product-derived compound collections. We report a structural classification of natural products (SCONP) as organizing principle for charting the known chemical space explored by nature. SCONP arranges the scaffolds of the natural products in a tree-like fashion and provides a viable analysis- and hypothesis-generating tool for the design of natural product-derived compound collections. The validity of the approach is demonstrated in the development of a previously undescribed class of selective and potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 with activity in cells guided by SCONP and protein structure similarity clustering. 11beta-hydroxysteroid dehydrogenase type 1 is a target in the development of new therapies for the treatment of diabetes, the metabolic syndrome, and obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.