Abstract

Major, trace element compositions and Sr–Nd isotopic characteristics of charnockitic gneisses from the Southern Granulite Terrain (SGT), South India are presented. The study region encompasses the central segment of the Cauvery Shear Zone system (CSZ) and regions within the Madurai Block (MB) immediately south of it (designated here as the CSZ/MB and MB domains). Differences in the compositions and source characteristics between charnockitic rocks of the CSZ vis-à-vis those of the CSZ/MB and MB regions are highlighted. Foremost, the charnockites and enderbites of the CSZ show highly fractionated REE patterns with positive Eu-anomalies, depleted HREE, Y and near chondritic εNd 0 and initial- 87Sr/ 86Sr at ca. 2.5 Ga, consistent with hydrous partial melting of amphibolitic crust with residual garnet and hornblende for the parental melts. By contrast, modeled at ca. 1.8 Ga and 0.8 Ga, the CSZ/MB and MB charnockitic rocks, which show a wider range of Ti and P, relatively lower degree of HREE depletion, commonly negative Eu-anomalies and undepleted Y, present clear evidence for involvement of Archaean crustal components in sources of their magmatic protoliths. There is also evidence for significant intracrustal melting processes within a thickened crust at elevated temperatures between 800 and 1000 °C. Implications to the controversial Archaean–Neoproterozoic terrane boundary problem of the SGT are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call