Abstract

ABSTRACTCharnockite and homophanous leptynite are two quartz–feldspar neosomes in the late Archaean granulite-migmatite Eastern Ghats terrane of Orissa, India. Three phases of deformation and metamorphism are recognised to have preceded a late phase, or phases in which deformation was not intense. An early granulite facies event (D1–M1) produced basic granulites and khondalite (sillimanite-garnet aluminous paragneiss). A second event (D2–M2) involved some retrogression but temperatures and pressures remained high (possibly c. 750°C—>5 kb). D3–M3 was associated with the development of open folds (F3) with axial planar shear zones in pinched antiforms; temperatures and pressures were also falling (c. 650°C— 4kb), but the shear zones acted as a control on the development of firstly homophanous leptynite, and secondly charnockite. In both cases, neosomes of quartz and potassium feldspar have myrmekitic textures and intergranular occurrence. The palaeosome became strained and garnet–biotite and garnet–biotite–clinopyroxene ± orthopyroxene mineral assemblages were formed in association with the development, respectively, of homophanous leptynite and charnockite. The persistence of straining in the palaeosome and the presence of poikilitic textures indicate that this typical assemblage does not represent one in thermodynamic equilibrium. This has important consequences for geothermobarometry.The structural control on neosome development reflects a regional characteristic where shear zones are the site of peralkaline plutons, fenitisation, carbonatites and epigenetic graphite development. The peculiar features of charnockite are seen as just one of several aspects related to the fluxing of hot CO2-dominated fluids from either the deep crust or mantle during the late Archaean development of the Indian craton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call