Abstract

We study vacuum masses of charmonia and the charm-quark diffusion coefficient in the quark-gluon plasma based on the spectral representation for meson correlators. To calculate the correlators, we solve the quark gap equation and the inhomogeneous Bethe–Salpeter equation in the rainbow-ladder approximation. It is found that the ground-state masses of charmonia in the pseudoscalar, scalar, and vector channels can be well described. For 1.5Tc<T<3.0Tc, the value of the diffusion coefficient D is comparable with that obtained by lattice QCD and experiments: 3.4<2πTD<5.9. Relating the diffusion coefficient with the ratio of shear viscosity to entropy density η/s of the quark-gluon plasma, we obtain values in the range 0.09<η/s<0.16.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call