Abstract
Starting from fixed-order perturbation theory (FOPT) we derive expressions for the heavy-flavour components of the deep-inelastic structure functions FL and F2 in the variable-flavour number scheme (VFNS). These expressions are valid in all orders of perturbation theory. This derivation establishes a relation between the parton densities parametrized at N and N light flavours. The consequences for the existing parametrizations of the parton densities are discussed. Further we show that in charm electroproduction the exact and asymptotic expressions for the heavy-quark coefficient functions yield identical results for F2 when Q^2>20 (GeV/c)^2. We also study the differences between the FOPT and the VFNS descriptions for F2. It turns out that the charm structure function in the VFNS is larger than the one obtained in FOPT over the whole Q^2-range. Furthermore inspection of the perturbation series reveals that the higher order corrections in the VFNS are smaller than those present in FOPT for Q^2>10 (GeV/c)^2. Therefore the VFNS gives a better prediction for the charm structure function at large Q^2-values than FOPT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.