Abstract
The increasing market share of electric vehicles (EVs) leads to determine a proper strategy for charging/discharging EV batteries such that rewards of all agents including EV charging stations (EVCSs) and EV owners (EVOs) that participate in charging/discharging EV batteries are guaranteed. In this study, an economical and technical strategy is developed. It focuses on finding proper EVCSs by EVOs and determining optimal day-ahead electricity prices traded between all agents such that the rewards of EVCSs and EVOs are met simultaneously. This optimal charging/discharging decision making and optimal day-ahead electricity prices are determined by bilevel programming problem (BLPP). The outer level corresponds to the optimization problem of EVCSs and the inner level belongs to EVOs. Salp swarm optimization (SSO) algorithm is utilized to solve BLPP. Based on determination of minimum distance travelled by EVOs and optimal day-ahead electricity prices offered by EVCSs, the rewards of EVCSs and EVOs are analysed during charging/discharging period. For simulation purposes, a case study based on San Francisco in US is presented to visualize and validate the modelling results. Six EVCSs are installed in San Francisco for charging/discharging 247 EVs during 24 hours of a typical day. Simulation results show that under implementing the proposed charging/discharging strategy, the total cost of EVOs decreases by 17.8% and total revenue of EVCSs increases 18.2%, in comparison with not considering the proposed strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.