Abstract

Thin films of CdS and CdSe are deposited on HF-cleaned SiO2∕Si substrates containing ∼5nm thermally grown silicon oxide. x-ray photoelectron spectroscopy (XPS) data of these films are collected in a dynamic mode, which is based on recording the spectrum under modulation with an electrical signal in the form of ±10V square-wave pulses. Accordingly, all peaks are twined and shifted with respect to the grounded spectrum. The binding energy difference between the twinned peaks of a dielectric system has a strong dependence on the frequency of the electrical stimuli. Therefore, dynamic XPS provides a means to extract additional properties of dielectric materials, such as effective resistance and capacitance. In this work, the authors report a new advancement to the previous method, where they now probe a photodynamic process. For this reason, photoillumination is introduced as an additional form of stimulus and used to investigate the combined optical and electrical response of the photoconductive thin films of CdS and CdSe using dynamic XPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call