Abstract
The transition toward electric-powered devices is anticipated to play a pivotal role in advancing the global net-zero carbon emission agenda aimed at mitigating greenhouse effects. This shift necessitates a parallel focus on the development of energy storage materials capable of supporting intermittent renewable energy sources. While lithium-ion batteries, featuring inorganic electrode materials, exhibit desirable electrochemical characteristics for energy storage and transport, concerns about the toxicity and ethical implications associated with mining transition metals in their electrodes have prompted a search for environmentally safe alternatives. Organic electrodes have emerged as promising and sustainable alternatives for batteries. This review paper will delve into the recent advancements in nature-inspired electrode design aimed at addressing critical challenges such as capacity degradation due to dissolution, low operating voltages, and the intricate molecular-level processes governing macroscopic electrochemical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.