Abstract

Wearable pressure sensors have attracted significant attention owing to their potential applications in health monitoring and connectivity to internet‐based apps. Polymers such as poly(vinylidene fluoride) have been used in sensors. However, being petroleum‐derived materials, they do not decompose and remain in the soil when disposed. Poly(l‐lactic acid) (PLLA) is a promising material because of its biodegradable nature and its derivation from plant‐based materials. In addition, the electrospun PLLA fiber mat contains real charges and exhibits electromechanical properties. However, the detailed charging properties of the PLLA fiber mats remain unclear. Herein, the charge distribution of these fiber mat is presented, and a charging model of the fiber mat and a numerical model of the output charges from the fiber mats with electrodes are proposed. Additionally, the retention properties of the stored charges are determined using surface potential measurements at different temperatures. In addition, a self‐power‐generating touch sensor and mask‐type sensor are developed using biodegradable materials produced from biomass. These studies contribute to the improvement in the charge properties of PLLA fiber mats and the resulting wearable biodegradable sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.