Abstract

The effects of the charging energy in the superconducting transition of granular materials or Josephson-junction arrays are investigated using a pseudo-spin-one model. Within a mean-field renormalization-group approach, we obtain the phase diagram as a function of temperature and charging energy. In contrast to earlier treatments, we find no sign of a reentrant transition in agreement with more recent studies. A crossover line is identified in the nonsuperconducting side of the phase diagram and along which we expect to observe anomalies in the transport and thermodynamic properties. We also study a charge ordering phase, which can appear for large nearest-neighbor Coulomb interaction, and show that it leads to first-order transitions at low temperatures. We argue that, in the presence of charge ordering, a nonmonotonic behavior with decreasing temperature is possible with a maximum in the resistance just before entering the superconducting phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.