Abstract
High-temperature superconducting (HTS) coil wounds without turn-to-turn insulation (NI coils) present excellent electrical and thermal performance compared to HTS coil wounds with Kapton tape (INS coils). However, NI HTS coils are physically connected to power supplies at room temperature, resulting in increased operating costs due to complex cooling systems and constant heat loads. To overcome this issue, recent studies have investigated alternative charging methods such as flux pump, a power source without any physical contact with the HTS coil at cryogenic temperatures. Even though the NI coil is charged using a flux pump, the disadvantageously slow charge and discharge time remain. In this study, we conducted experiments to compare the charging characteristics of INS and NI coils using a rotary HTS flux pump. A superconducting circuit comprising two coils with equal inductance magnitude is connected in series. From the experiments, we compare the charging characteristics of charging time constant and magnetic field when the same current is applied to the two coils with a power supply and a rotary HTS flux pump. In the NI coil rotary HTS flux pump case, the charging time constant converged to about 6 s in the alternating magnetic field (AMF) above 20 Hz, and the value is similar to the power supply. At 60 Hz and higher AMF, the maximum magnetic field difference from the power supply converged to less than 1%, which appears to be a difference in current and voltage source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.