Abstract
Piezoelectric energy harvesting technology is regarded as a remedy to the short-life battery issue in low-power electronic devices, and has been extensively studied in the past two decades. Although a variety of new structures and mechanisms have been proposed for piezoelectric energy harvesters (PEHs), there is not much progress made on the piezoelectric materials that play a determinant role in PEHs performance. Most energy harvesters are still constructed with lead zirconate titanate (PZT). Recently, the new-generation piezoelectric materials PMN-PT and PZN-PT single crystals are proposed and start to be used in transducers. Their electromechanical coupling factor (k33) is over 90%, and the piezoelectric coefficient (d33) can reach three times of that of PZT. This study characterizes the PMN-PT and PZN-PT single crystals used in energy harvesters, compared with the polycrystalline PZT, in terms of charging capacitors. Systematic discussions are presented on the voltage, power and energy responses, as well as the reverse coupling effect on the mechanical response and the self-discharge effect of capacitors. Furthermore, a self-powered synchronized switch harvesting on inductor (SSHI) circuit is constructed and tested with the new single-crystal based energy harvesters. Experiments indicate that PMN-PT and PZN-PT can significantly boost the charging capability of energy harvesters, and that performance can be further enhanced by the SSHI circuit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.