Abstract

The charging behaviour of MNS (metal-nitride-silicon) and MNOS (metalnitride- oxide-silicon) structures containing Si or Ge nanocrystals were studied by capacitance-voltage (C-V) and memory window measurements and by simulation. Both the width of hysteresis of C-V characteristics and the injected charge exhibited exponential dependence on the charging voltage at moderate voltage values, while at high voltages the width of hysteresis of C-V characteristics and the injected charge exhibited saturation. The memory window for reference MNS structure without nanocrystals was wider than that for reference MNOS structures. The presence of nanocrystals enhanced the charging behaviour of MNOS structures, but in MNS structures nanocrystals exhibited the opposite effect. The main conclusion is that the presence of nanocrystals or other deep levels close to the Si surface enhances the charge injection properties due to the increased tunneling probability, but nanocrystals or other deep levels located far from the Si surface in the nitride layer do not enhance, but even can degrade the charging behaviour by the capture of charge carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.