Abstract

This study presents a charging and discharging controller of a lithium-ion battery for charge equalization control of a battery storage system using the particle swarm optimization (PSO) algorithm. The charge equalization controller is designed using a bidirectional flyback DC–DC converter for exchanging the amount of energy from a battery series stack to an overdischarged cell to be charged and vice versa. The constant current–constant voltage charge proportional–integral (PI) control and discontinuous current mode control are applied to charge and discharge the lithium-ion battery on a flyback converter operation. This proposed system utilizes the PSO algorithm to optimize the values of the PI controller parameters. Optimization results produce the ideal values of the PI controller parameters with minimum error indices, thereby regulating the pulse-width modulation to the MOSFET switching drive of the flyback converter and upgrading the battery charge performance for charge equalization. The PSO algorithmic approach-based developed system is proven to be robust and competent for high-tech storage systems toward the advancement of sustainable electric vehicle technologies and renewable source of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.