Abstract

Experimental and theoretical capacitance-voltage (C-V) curves for the Al/PI/multiple-stacked Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> nanoparticle arrays/Pl/p-Si (100) structures at 300 K showed that the flatband voltage shift of the metal-insulator-semiconductor capacitor was affected by the value of the sweep voltage, indicative of the variations of the charged electron density in the multiple-stacked Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> nanoparticle arrays. Experimental and theoretical current-voltage (I-V) results showed that the current increased with increasing applied voltage due to thermally assisted tunneling effect. Charging and discharging mechanisms of vertically stacked Ni <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1-x</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> self-assembled nanoparticle arrays embedded in PI layers are described on the basis of the C-V and I-V results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.