Abstract

The operation of solar driven air conditioning systems is limited to the availability of solar radiation. Consequently, to achieve extended cooling period, energy storage is necessary. This study presents performance evaluation and charging and discharging characteristics of an absorption energy storage coupled with solar driven double-effect water-lithium bromide (H2O-LiBr) absorption system through thermodynamic modeling and simulation. The absorption energy storage stores the solar heat in the form of chemical energy during the day and discharges later for cooling application. The integrated system achieved effective cooling for about fourteen hours on daily basis. The results indicate an average coefficient of performance (COP) of 1.35 for the integrated absorption chiller-storage unit and exergy efficiency of 25%. Furthermore, the overall COP of the integrated solar cooling system is 0.99 and the overall exergy efficiency is 6.8%, while the energy storage density for typical climatic conditions of Dhahran, Saudi Arabia is found to be 444.3 MJ/m3. The energy storage density obtained from the integrated solar driven H2O-LiBr double-effect absorption system is found to be higher by 13–54% compared to other integrated systems based on single-effect configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.