Abstract

Electrospray-ionization mass spectrometry (ESI-MS) is widely used for protein studies. It has been shown that the extent of protein ionization under nondenaturing conditions correlates well with the solvent-accessible surface area of the tridimensional structure, for either folded monomers or multimeric complexes. The goal of this study was to test whether this relation holds for unfolded proteins as well. In order to overcome the paucity of structural data, the server ProtSA was used to model the conformational ensembles of proteins in the unfolded state and generate estimates of the average solvent accessibility. The results are analyzed along with literature data or original measurements by ESI-MS. It is found that the charge-to-surface relation holds for proteins in the unfolded state, free from solvent effects. A double-log plot is derived, in close agreement with published data for folded proteins. These results suggest that the solvent-accessible surface area is a key factor determining the extent of protein ionization by electrospray, independent of the conformational state. This conclusion helps rationalizing conformational effects in protein ESI-MS. The here reported relation can be used to predict the average solvent accessibility and, hence, the state of folding of unknown proteins from ESI-MS data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.