Abstract

Self‐consistent equilibrium and nonequilibrium charge‐state models are formulated for the spherical expansion of low‐Z pellet vapor as an inviscid perfect gas of constant ratio of specific heats being heated volumetrically by the incident electrons of a thermonuclear plasma. The two models are found to be in agreement in the region where the ratio of the ionization length ζj to pellet radius rp is less than unity, but a single parameter, such as the magnitude of this ratio on the sonic surface, is insufficient to determine whether an equilibrium model will be valid for all regions of the ablatant for carbon pellets. Thus a nonequilibrium model is necessary to model the outer regions of the ablatant cloud even for thermonuclear plasma conditions when the cloud is very dense. Also, the effect of the ionization of the ablatant by the incident plasma electrons is found to be 10% or less for even the C+3 region in the thermonuclear regime. Finally, although the model used for the healing of the ablatant by the plasma electrons is that for a neutral carbon ablatant, it is shown that the differences in heating by the plasma electrons between this model and that for an ionized ablatant are small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.