Abstract

Abstract. A time-dependent model based on a numerical solution of Parker’s transport equation is used to model the modulation of cosmic ray protons, electrons and helium for full 11-year and 22-year modulation cycles using a compound approach. This approach incorporates the concept of propagating diffusion barriers based on global increases in the heliospheric magnetic field as they propagate from the Sun throughout the heliosphere, combined with gradient, curvature and current sheet drifts and the other basic modulation mechanisms. The model results are compared to the observed 11-year and 22-year cycles for 1.2 GV electrons and 1.2 GV Helium at Earth for the period 1975–1998. The model solutions are also compared to the observed charge-sign dependent modulation along Ulysses’ trajectory for the period 1990–1998. This compound approach to long-term modulation, especially charge-sign dependent modulation, is found to be remarkably successful. It is shown that the model can easily account for the latitude dependence for cosmic ray protons and the lack thereof for cosmic ray electrons by assuming large perpendicular diffusion in the polar direction. This approach contributes to an improved understanding of how diffusion and drifts vary from solar minimum to maximum modulation, and what the time-dependence of the heliospheric diffusion coefficients may be. Key words. Interplanetary physics (energetic particles; cosmic rays; general or miscellaneous)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.