Abstract

A modified form of the Debye-Marcus equation relating electron transfer rate constants to charges on proteins and distances of electron transfer has been applied to the reaction of chemically modified cytochrome f, in which positively charged amino groups are replaced with negatively charged carboxyl groups. The rate of electron transfer from reduced cytochrome f to ferricyanide decreased with increasing ionic strength when the native and singly substituted cytochrome f were used, although a sharp decrease was observed in the former case. When doubly or more than triply substituted cytochrome f was used, the rate of electron transfer was almost constant or increased with increasing ionic strength, respectively. The kinetic-ionic strength effects on this reaction can be well explained by the Debye-Marcus equation in which the charge and radius of the protein are treated as variable parameters. The results show the importance of local positive charges of about 2.0 on native cytochrome f and effective radius of about 11 A of cytochrome f for the electron transfer to ferricyanide. Since the net charge on the native cytochrome f is negative and the calculated radius of the protein is 22.8 A, the above results indicate that positive charges on the electron transfer site control the electrostatic interactions in this reaction. Previously reported data which had been analyzed by using the total net charge and full radius of the protein, were also well explained by the local charge and effective radius of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call