Abstract

Secondary structures such as α-helix and β-sheet are the major structural motifs within the three-dimensional geometry of proteins. Therefore, structure transitions from β-sheet to α-helix not only can serve as an effective strategy for the therapy of neurological diseases through the inhibition of β-sheet aggregation but also extend the application of α-helix fibrils in biomedicine. Herein, we present a charge-induced secondary structure transition of amyloid-derived dipeptide assemblies from β-sheet to α-helix. We unravel that the electrostatic (charge) repulsion between the C-terminal charges of the dipeptide molecules are responsible for the conversion of the secondary structure. This finding provides a new perspective to understanding the secondary structure formation and transformation in the supramolecular organization and life activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call