Abstract

The dynamic behavior of emulsion droplets during their interactions with one another or with solid surfaces plays a paramount role in their ultimate stability in various applications. While the interaction of oil droplets through a surrounding aqueous phase is well understood, recent studies on the interaction of water droplets through a surrounding pure organic phase showed the presence of an unexplained attraction between water droplets at relatively long ranges. In this research study, we propose fixed-surface-charge-bulk-dipole attraction as a new interaction force between water-in-oil droplets and then derive an equation for its disjoining pressure. The behavior of water droplets in the presence and absence of this charge-dipole interaction was numerically quantified using the Stokes-Reynolds-Young-Laplace model and compared to the experimental data. Numerically calculated net force curves are in excellent agreement with experimental data from the literature when charge-dipole attraction is included, while they deviate in its absence. In addition, the water droplet and thin oil film profiles in the presence and absence of charge-dipole attraction were calculated and compared. This research indicates that charge-dipole attraction can adequately explain the mysterious force observed in some studies, which demonstrates its unexplored potential to capture the physical properties and dynamic behavior of water droplets in organic phases with useful implications to unravel unidentified interactions between emulsion droplets in different industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call