Abstract

Wheeler's approach to finding exact solutions in Lovelock gravity has been predominantly applied to static spacetimes. This has led to a Birkhoff's theorem for arbitrary base manifolds in dimensions higher than four. In this work, we generalize the method and apply it to a stationary metric. Using this perspective, we present a Taub-NUT solution in eight-dimensional Lovelock gravity coupled to Maxwell fields. We use the first-order formalism to integrate the equations of motion in the torsion-free sector. The Maxwell field is presented explicitly with general integration constants, while the background metric is given implicitly in terms of a cubic algebraic equation for the metric function. We display precisely how the NUT parameter generalizes Wheeler polynomials in a highly nontrivial manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.