Abstract
The amyloid β-peptide with a sequence of 42 amino acids is the major constituent of extracellular amyloid deposits in Alzheimer's disease plaques. The control of the peptide self-assembly is difficult to achieve because the process is fast and is affected by many variables. In this paper, we describe the effect of different charged and non-charged surfactants on Aβ(₁₋₄₂) fibrillation to define common alternate aggregation pathways. The characterization of the peptide-surfactant interactions by ultra-structural analysis, thioflavin T assay and secondary structure analysis, suggested that charged surfactants interact with Aβ(₁₋₄₂) through electrostatic interactions. Charged micelles slow down the aggregation process and stabilize the peptide in the oligomeric state, whereas non-charged surfactants promote the Aβ(₁₋₄₂) fibril formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.