Abstract

By means of first-principles calculations within the density functional theory, we study the structural and optical properties of codoped ZnO nanowires and compare them with those of the bulk and film. It is disclosed that the low negatively charged ground states of nitrogen-related defects play a key role in the optical absorption spectrum tail that narrows the band gap and enhances the photoelectrochemical response significantly. A strategy of uncompensated N, P, and Ga codoping in ZnO nanowires is proposed to produce a redshift of the optical absorption spectra further than the exclusive N doping and to get a proper formation energy with a high defect concentration and a suppressed recombination rate. In this way, the absorption of the visible light can be improved and the photocurrent can be raised. These observations are consistent with the existing experiments, which will be helpful to improve the photoelectrochemical responses for the wide-band-gap semiconductors, especially in water splitting applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.