Abstract
The formation of charged pion condensate in anti-parallel electromagnetic fields and in the presence of the isospin chemical potential is studied in the two-flavor Nambu–Jona-Lasinio model. The method of Schwinger proper time is extended to explore the quantities in the off-diagonal flavor space, i.e. the charged pion. In this framework, are treated as bound states of quarks and not as point-like charged particles. The isospin chemical potential plays the role of a trigger for charged pion condensation. We obtain the associated effective potential as a function of the strength of the electromagnetic fields and find that it contains a sextic term which possibly induces a weak first order phase transition. The dependence of pion condensation on model parameters is investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.